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ABSTRACT 

The influence of different disturbance combinations and increasing sweep on a family of pressure-induced 
laminar separation bubbles is studied systematically by means of direct numerical simulation (DNS). 
Three types of disturbance waves are tested against their potential to stimulate the growth of background 
disturbances of fundamental or subharmonic frequency. The focus is on 2D-disturbances, which are 
normally the most amplified disturbances in unswept separation bubbles. For the present 3D-base flows, 
they are found to lose their dominance for sweep angles larger than 10° to 15°. Instead, oblique waves 
with a propagation direction between 0° and -6° relative to the potential streamline trigger the strongest 
growth of background disturbances. Spatial linear stability theory (LST) was utilised to select the most 
amplified disturbances for each sweep angle. LST turned out to be as reliable as in unswept laminar 
separation bubbles and its excellent agreement with DNS within the linear domain was not adversely 
affected by the sweep angle. 

1.0 INTRODUCTION 

1.1 Motivation 
Due to strong adverse pressure gradients and low Reynolds numbers, laminar separation bubbles (LSB) 
are often encountered on high-lift devices of commercial aircraft, on the wings of gliders and smaller 
unmanned air vehicles. For instance, a laminar separation bubble was measured at the slat of an Airbus 
A310 in [3]. The corresponding leading-edge sweep angle is Ψ∞=30°. In the flow regime of 
incompressible flow with low to moderate Reynolds numbers they are known to strongly influence the 
performance of airfoils. Although most of the flows of practical interests are inherently 3D, literature 
about separation bubbles in 3D-flows is rare, and research effort has so far been concentrated almost 
exclusively on the easier 2D-case. The present work is motivated by the question how much of our 
knowledge of laminar separation bubbles in a 2D-flow carries over to the swept case and which new 
phenomena appear. Therefore, the goal of the investigations is two-fold: first, to determine which types of 
disturbance combinations are effective in swept LSBs in terms of a strong amplification and early 
transition and second, to study the impact of sweep on the stability and transition of separated 3D-flows. 
As there is no general theory and nearly no guidance from literature concerning swept laminar separation 
bubbles, the present study is more qualitative and attempts to formulate some general trends concerning 
the special situation of LSBs in a swept boundary-layer flow. This should serve as a basis for later 
investigations and as a first orientation for others new to the field. 
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1.2 The underlying base flow 
A generic family of short leading-edge separation bubbles on a swept plate were calculated by means of 
direct numerical simulation (DNS). This stationary, purely laminar base flow serves as a basis for the 
following disturbance calculations and was analysed with spatial linear stability theory (LST) in order to 
determine the most interesting disturbance combinations. The design is based on previous work on 2D 
separation bubbles in [4]. The underlying geometry allows a systematic variation of the sweep angle from 
0° to 45°. As an example, the whole integration domain including external streamlines and the separating 
surface of the resulting bubble are shown in figure 1.1 for the 30°-case. The separation bubble itself is 
created by the introduction of an adverse pressure gradient obtained by prescribing the streamwise 
velocity component Ue at the upper boundary. An infinite swept flat plate with appropriate pressure 
distribution is a simple, but suitable, model of a swept wing or high-lift device.  A similar setup had been 
chosen by Horton for his extensive experiments in this field in [1] and [2]. Properties of the swept laminar 
base flow, the utilised numerical scheme and a first analysis of the effect of sweep by linear stability 
theory have already been reported in [7]. The strong impact of separation on the amplification rates can 
exemplarily be seen in figure 1.2, where LST-results of the present 30° separation bubble are compared to 
a Falkner-Skan-Cooke base flow with the same inflow profiles, but a zero pressure gradient thereafter. The 
primary instability of the separated flow inside the LSB is up to 16 times stronger. 
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Fig. 1.1: Ψ∞=30°, base flow with LSB-surface and external streamlines. Ue(x) is the prescribed free-stream 
velocity in chordwise direction resulting in an adverse pressure gradient. 
 Numerical scheme and  case parameters 
 numerical DNS-scheme is based on the complete incompressible Navier-Stokes-equations in velocity-
ticity formulation and has been successfully applied to 2D-separation bubbles [4] and 3D boundary 
r flows [5] in the past. An in-depth description of the 6th-order algorithm can be found in [6]. All 
ntities are nondimensional, normalised by a reference length L=0.05m, and the chordwise free-stream 
city U∞=30 m/s, which was held constant. Different sweep angles Ψ∞ were realised by varying the 

nwise free-stream velocity W∞= U∞·tan(Ψ∞), as described in [7]. Falkner-Skan-Cooke profiles are 
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prescribed at the inflow at xo=0.37. The flow is characterised by the Reynolds number 331)(Re 01
=xδ , 

based on the displacement thickness at the inflow. All angles are measured relative to the x-axis, the 
streamwise direction of the unswept case, with positive angles describing clockwise rotation. 
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Fig. 1.2: Ψ∞=30°, comparison of LST-amplification rates αI of the 30° separation bubble (coloured) and the
same base flow without pressure gradient (thick black lines). XS & XR = separation & reattachment line.
.0 DETERMINATION OF THE RELEVANT DISTURBANCE SCENARIOS  

.1 The structure of the disturbance cases 
ll disturbance calculations follow the same pattern: disturbance waves are excited in the steady, laminar 
ase flow by periodic suction and blowing through the wall. One selected disturbance, the so-called 
primary disturbance”, is introduced with a much higher initial v -amplitude of 10-5. Hence the primary 
isturbance will be dominant throughout the linear and early non-linear regime, defining a certain 
isturbance scenario. To this disturbance is added always the same set of 17 small “background 
isturbances” with varying spanwise wave numbers ]40,...,,40[ 35−−∈γ  as “partners” for non-linear 
teraction. If the background disturbances, whose initial amplitudes are 5 orders of magnitude lower, 
are the frequency β  with the primary disturbance, we call the scenario a “fundamental” one; else in the 

ase of 2β  we speak of a “subharmonic case”. This mimics a situation where a single high amplitude 
isturbance suddenly hits a swept separation bubble in the presence of different background disturbances. 
ossible resonances and non-linear interactions between them may lead to a much faster breakdown of the 
minar state than in the case where only one component is acting. The comparison of figure 2.1 and 
gure 2.2 shows that the specific choice of the primary disturbance in terms of frequency and spanwise 
ave number (β/γ) has a noticeable impact on the transition process of the scenario in question.  
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Fig. 2.1: Ψ∞=30°, fundamental 
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2.2 Three hypotheses about the fastest road to transition 
Our aim is to determine the disturbance combinations (within the concept of section 2.1) most dangerous 
for the base flow and to study the effect of sweep on them. To this end three hypotheses, illustrated in 
figure 2.4, are investigated: 

Hypotheses:  Fastest transition is triggered by primary disturbances which 

i) propagates in 0°-direction along the x -axis (2D-disturbances). 

ii) propagates in direction of the potential streamline. 

iii) experience the strongest overall linear amplification in the swept bubble of their scenario. 

All three hypotheses coincide in the 2D-base flow, as the most amplified wave is usually two-dimensional 
in this case and the potential streamline must follow the 0°-direction by definition. Hypothesis (i) is based 
on the fact that the pressure gradient caused by the deceleration of the free stream velocity Ue(x) always 
acts only in the streamwise x -direction. This is a direct consequence of the independence principle of the 
base flow in an infinite swept-wing geometry. Also, in the unswept case of 2D laminar separation bubbles, 
2D-disturbances or weakly oblique modes are the linearly most amplified waves (see [4]). If they remain 
dominant also in swept base flows, governing the transition process regardless of the sweep angle Ψ∞ the 
knowledge of the 2D-case might be helpful for the interpretation of the swept ones and maybe even 
sufficient for predictions about the behaviour of swept scenarios.  

Hypothesis (ii) is motivated by the idea that a swept case should be locally very similar to the 2D-case, if 
we introduce a coordinate transformation with the direction of the potential streamline as new 0° direction. 
Because the Ue-deceleration is only moderate and confined to the neighbourhood of the laminar separation 
bubble (  in figure 2.4) the potential streamline is only slightly curved. As the maximal 
deviation is only +2° (in the given example of the 30° base flow) the “direction of the potential stream 
line” and the “sweep angle” are used as synonyms in the following. So we exchange the local 
transformation for a global one and expect the strongest amplification of a primary disturbance if it 
propagates approximately in the direction of the sweep angle Ψ

]42.2;71.0[∈x

∞. If (ii) is always true, parts of our 
knowledge of unswept LSB might be transferable to swept cases by means of the coordinate 
transformation mentioned above.   

Hypothesis (iii) states that the fastest transition to turbulence is to be expected in cases where the primary 
disturbance reaches the critical level of 1% U∞ as early as possible, after which it can influence the 
background disturbances effectively (e.g. be means of resonance). In this case we are to choose the mode 
with the fastest overall amplification in the linear domain, wherever it may lie in parameter space. LST 
can be used to identify it for a given scenario. If (iii) is true and if the chosen modes does not appear in a 
predictable way with growing sweep angle then there is little hope that knowledge of the associated 2D-
case might be useful. Each sweep angle would than define a completely new case. 

2.3 LST-results for the different sweep angles 
For each sweep angle Ψ∞ and hypothesis in section 2.2, the mode with the strongest integral growth over 
the linear domain has been chosen by means of LST among all modes fulfilling the condition of the 
hypothesis in question. There was always a unique maximum in parameter space (β/γ), but neighbouring 
modes showed nearly identical amplification. Table 2.1 gives an overview: 
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Ψ∞ Ψ=0 Ψ=Ψ∞ Ψ Ampmax Ψ 

0° (18|0) (18|0) 0° (18|0) 0° 

15° (18|0) (18|+10) 12° (18|+10) 12° 

30° (18|0) (20|+25) 32° (20|+20) 25° 

45° (18|0) (22|+30) 44° (24|+30) 39° 

 

Table 2.1: Linearly most amplified primary disturbance (β/γ ) according to LST with:                   
Ψ=0:  propagation direction 0°                                                                                              

Ψ=Ψ∞:  propagation in inflow direction                                                                                      
Ampmax:  integrally strongest linear amplification                                                                             

Ψ:  mean local propagation direction 

Generally, we see that with increasing sweep angle waves with higher frequency β and spanwise wave 
number γ experience the strongest growth. It is remarkable that the linearly most amplified mode, which 
could lay anywhere in parameter space, always propagates roughly in the direction of the potential 
streamline, with a maximal difference of about 6° in anticlockwise direction in the 45°-case. Therefore, 
the hypothesis (ii) and (iii) coincide to a certain degree.  

3.0 2D-PRIMARY DISTURBANCES AND THE EFFECT OF SWEEP 

The following disturbance calculations focus on the influence of primary disturbances on their transition 
process and on the effect of sweep on the scenarios. To this end the assumptions (i)-(iii) from section 2.2 
with their corresponding primary disturbances identified in section 2.3 are compared to each other. The 
reference cases are the fundamental and subharmonic scenario of the unswept bubble, which has been 
extensively investigated in [4]. The aim is to find the disturbance combinations with the strongest 
disturbance amplification and fastest transition to turbulence in a given case, as one expects these to 
appear in real flows and therefore to be the most relevant for practical applications. In a second step, we 
want to know how an increasing sweep angle modifies the scenarios. In this way, some general trends 
concerning the behaviour of the investigated family of swept separation bubbles can be derived. By later 
comparison with other investigations under different conditions (e.g. much larger separation bubbles with 
a stronger reverse flow, or different disturbance scenarios like oblique breakdown or white noise) they can 
be confirmed or modified resulting in a set of “rules of thumb”. After generally understanding swept 
separation bubbles better, the long-term objective remains to influence and control them. 

The cases (ii) and (iii) with oblique primary disturbances show very strong amplification for larger sweep 
angles and are presently still under investigation. Therefore the main focus is here on the scenarios with 
2D-primary disturbances. 
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3.1 2D primary disturbances (hypothesis (i)) 

3.1.1 The fundamental case 

Figure 3.1 shows the reference case of the unswept bubble as a starting point. After the primary 
disturbance (18/0) of the 2D-bubble gains sufficient amplitude, it is able to generate, together with the 
most amplified background disturbance (18/+40), the missing partner (0/-40), thus forming a triad. The 
identical amplification rates of both background disturbances in figure 3.1 after are a sign for 
resonance. In figure 3.2 we can compare the most amplified background disturbance (18/+40) for each 
sweep angle Ψ

2.2≈x

∞ with the unswept case. Note that the development of the primary disturbance (18/0) there 
is independent of Ψ∞, as primary disturbances in our scenarios are generally unaffected by the much 
smaller background disturbances in the first half of the domain and therefore in perfect agreement with 
LST nearly to the point of its non-linear saturation, as in figure 3.1. In the special case of γ=0 however, the 
influence of the -velocity component on LST vanishes and only u  remains. As a consequence of the 
independence principle for the base flow,  itself is independent of Ψ

w
u ∞, so that the amplification curves 

for (18/0) coincide regardless of Ψ∞ as seen in figure 3.2.  
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Fig. 3.1: Ψ∞=0°, fundamental case. 2D-PD (18/0) &
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Fig. 3.4: Ψ∞=30°, fundamental case. 2D-PD (18/0) 
vs. strongest amplified PD (20/+20) with points of 
Separation & Reattachment. Symbols: non-linearly 
generated modes completing the triads. 

Fig. 3.5: Ψ∞=15°, fundamental case. 2D-PD (18/0) 
and linearly strongest amplified PD (18/+10) as 
well as their background disturbances are already 
equally strongly amplified at Ψ∞=15°.  

 

 

3.1.2 The subharmonic case 

The subharmonic case, in which all background disturbances have only half of the frequency of the 
primary disturbance, exhibits all the trends of the fundamental one, but they appear clearer. As seen in 
figure 3.6, the most amplified background disturbance (9/+40) simply decreases monotonically with 
growing sweep angle after reattachment for the case of a 2D-primary disturbance. The comparison with 
LST in the linear domain works just as well as for the fundamental case. As seen in figure 3.7, also sweep 
angles as large as Ψ∞=45° have no negative effect on the applicability of LST.  
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magnitude inside the separation bubble (x=2.0) and is even more than 1000 times higher at x=2.5. 
Compared to the unswept 2D-base flow, its amplitude level is more than two orders of magnitude greater.  
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Fig. 3.8: Ψ∞=30°: subharmonic case. The oblique PD 
with strongest linear amplification (20/+20) stimulates
a much higher amplification of background 
disturbances than the 2D PD (18/0) in the same base 
flow or the (18/0) of the unswept case. 

 

 

3.1.3 Rejection of hypothesis (i) 
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types, the linearly most amplified modes in a given base flow (type (ii)) and primary disturbances 
propagating in direction of the potential streamline (type (iii)), were also studied. Type (ii) also turned out 
to propagate always approximately in the same direction with a maximal divergence of -6° for Ψ∞=45°, so 
that the types (ii) and (iii) coincide to a certain degree. In an unknown swept laminar separation bubble, a 
primary disturbances travelling in the direction of the local potential streamline seems therefore to be a 
promising candidate for maximum background amplification. The types (ii) and (iii) are presently still 
under investigation, but as a trend they show stronger amplification and earlier transition with increasing 
sweep angle. In accordance with the unswept case investigated in [4], the subharmonic resonance was 
generally stronger than in the fundamental case. An exception is the decline of the background 
disturbances with increasing sweep angle for type (i), which is slower in the fundamental case. 2D-
primary disturbances were shown to be relevant only for small sweep angles of Ψ∞≤15°. Clearly 
investigations of unswept bubbles are insufficient to draw a conclusion about configurations with higher 
sweep angles.  

The quality of spatial linear stability theory (LST) was not affected with increasing sweep angle. The 
agreement with the DNS-results in the linear domain is as good as in the unswept separation bubbles. 
Modes with high spanwise wave numbers display a slightly earlier deviation from DNS. The application 
of LST can therefore also be recommended for swept LSB. 
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   1. REFERENCE No. OF THE PAPER:  10 
   2. DISCUSSOR´S NAME: Chris Atkin 
   3. AUTHOR´S NAME: Hetsch, Rist 

 
QUESTION:  
      How do you distinguish between crossflow and oblique TS modes (i.e. what are they in the  
      range 20” ≤ ψ ≤70o)? 
 
AUTHOR´S REPLY:  

In the presented case this was not necessary, as all important modes were clearly TS  
(│ψ│≤ 20o) or clearly CF (│ψ│≥70o). In general one would expect a continuous 
development from one form to the other. Back home I will have a look at the eigenfunctions 
of modes in the intermediate range (20o ≤ │ψ│≤ 70o) and hope to find some evidence 
whether a mode is „more likely” TS or „nearly“ CF. But in cases of a strong curvature of the 
potential stream-line (at the leading edge e.g.) a mode can start as a „clear“ TS-mode and end 
up as a CF-mode. So, in many cases it might be more a matter of taste if you call a mode TS 
or CF-mode. 

 
1. REFERENCE No. OF THE PAPER:  10 

 2. DISCUSSOR´S NAME: John Hourmouziadis 
 3. AUTHOR´S NAME: T. Hetsch 

 
QUESTION:   
         The end of the separation bubble was indicated at a position where large scale vortical  
         structures are generated. How was the reattachment point identified? 
 
AUTHOR´S REPLY:    
         In the time mean (steady, laminar base flow + non-linear base flow distortion (0/0) ) I use      
         ∂u/∂ywall = 0 as ∂u/∂ywall is directly proportioned to the wall shear stress and the bubble  
         is clearly visible due its back flow. 

 


